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Abstract
We discuss two known sheaf-cosheaf duality theorems: Curry’s for the face posets of
finite regular CW complexes and Lurie’s for compact Hausdorff spaces, i.e., covariant
Verdier duality. We provide a uniform formulation for them and prove their gener-
alizations. Our version of the former works over the sphere spectrum and for more
general finite posets, which we characterize in terms of the Gorenstein* condition.
Our version of the latter says that the stabilization of a proper separated ∞-topos is
rigid in the sense of Gaitsgory. As an application, for stratified topological spaces, we
clarify the relation between these two duality equivalences.
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1 Introduction

For the face poset P of a locally finite regular CW complex, Curry proved in [6,
Theorem 7.7] that a canonical equivalence

D : hDb(Fun(P,Vect)) −→ hDb(Fun(Pop,Vect)) (1.1)

between triangulated categories1 exists, where Vect denotes the category of vector
spaces over a field. Note that the polysimplicial case was proven before by Schneider
in [13, Proposition 2]. This leads to the following:

Question 1.2 Under what conditions on P do we have such a duality equivalence?

To answer this question, we must give a definition of “such a duality equivalence”
so that the desired equivalence is not an extra datum but a property.

Example 1.3 Let P be the poset generated by the relations 0 ≤ 1 ≤ 2 and 0 ≤ 1′ ≤ 2
on the set {0, 1, 1′, 2}. An isomorphism P � Pop gives an equivalence Fun(P, Sp) �
Fun(Pop, Sp), but the two isomorphisms give different equivalences. We can also use
the suspension functor to get many more equivalences.

Curry’s proof rules out this example, but his argument depends on a somewhat
arbitrary choice of a dualizing complex.

To get some insights, let us look at a similar equivalence in general topology. Let
X be a locally compact Hausdorff space. In [12, Section 5.5.5], Lurie states Verdier
duality as a canonical equivalence

D : ShvSp(X) −→ cShvSp(X)

between the ∞-categories of spectrum-valued sheaves and cosheaves. The original
construction is complicated, but as we see in Sect. 6, a simpler explanation exists: We
assume that X is compact for simplicity and write p : X → ∗ and d : X → X × X
for the projection and the diagonal, respectively. Then the composites

Sp
p∗
−→ ShvSp(X)

d∗−→ ShvSp(X × X) � ShvSp(X) ⊗ ShvSp(X), (1.4)

ShvSp(X) ⊗ ShvSp(X) � ShvSp(X × X)
d∗−→ ShvSp(X)

p∗−→ Sp (1.5)

1 Here h denotes the underlying triangulated category of a stable ∞-category.
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constitute a duality datum for the self-duality in Prst, the symmetric monoidal ∞-
category of presentable stable ∞-categories.2 Now let us get back to our problem and
take a finite poset P . It is known (see Sect. 5.2) that when X is its Alexandroff space
Alex(P) (see Definition 5.15), we have ShvSp(X) � Fun(P, Sp) and cShvSp(X) �
Fun(Pop, Sp). Moreover, in this case, both (1.4) and (1.5) are in Prst. However, these
do not form a duality datum unless P is discrete:

Example 1.6 Assume X = Alex(P) for a finite nondiscrete poset P . Pick an element
p ∈ P that is minimal among nonminimal elements. Let F : P → Sp be the extension
of S by zero along {p} ↪→ P . Then the value at p of the image of F under

ShvSp(X)
id⊗(1.4)−−−−−→ ShvSp(X) ⊗ ShvSp(X) ⊗ ShvSp(X)

(1.5)⊗id−−−−−→ ShvSp(X)

is given by the limit lim←−(F), which is a coproduct of (#(P<p) − 1) copies of �−1S
and never equivalent to F(p) = S.

Therefore we give up to use (1.4) and consider if the composite

ShvSp(X)
−⊗ShvSp(X)−−−−−−−→ [ShvSp(X),ShvSp(X) ⊗ ShvSp(X)] [id,(1.5)]−−−−−→ [ShvSp(X), Sp],

(1.7)

where [−,−] denotes the internal mapping object in Prst, is an equivalence. Thus we
reach the following:

Definition 1.8 We call a finite poset P Verdier if the pair (Fun(P, Sp), �) is a com-
mutative Frobenius algebra (cf. Sect. 2.1) in Prst, where � denotes the global section
functor.3

In other words, P is Verdier if and only if (1.5) is a “perfect pairing”. Our main
result rephrases the Verdier property in terms of the Gorenstein* property, a concept
used in combinatorial commutative algebra:

Theorem A For a finite poset P, the following are equivalent:

(i) The poset P is Verdier.
(ii) For each p ∈ P, the full subposet P<p is Gorenstein* (overZ), i.e., its geometric

realization is a generalized homology sphere (see Sect.3.2).
(iii) For each p < q in P, the limit ofZ[p,q], the extension of the constant functorZ by

zero along [p, q] ↪→ P vanishes. (Or equivalently, the limit of S[p,q] vanishes;
see Lemma 3.16.)

The existence of an equivalence Fun(P, Sp) � Fun(Pop, Sp) for P satisfying (ii)
or its variant where Sp is replaced by D(Z) may not surprise experts. What is novel is
the formulation itself, with which an if-and-only-if statement becomes possible.

2 We prove in Sect. 6.1 that ShvSp(X) is rigid, which is stronger than this claim.
3 This condition is a priori different from the requirement that (1.7) is an equivalence, but it turns out to be
equivalent by Lemma 2.1 as ShvSp(X) � Fun(P, Sp) is compactly generated in this case.
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Corollary 1.9 A finite poset P is Gorenstein* if and only if P� is Verdier.

Example 1.10 As proven in [4, Proposition 3.1], a finite poset P is the face poset of
some regular CW complex if and only if the geometric realization of P<p is homeo-
morphic to a sphere for each p. Hence any finite face poset is Verdier. In particular,
we have an equivalence Fun(P, Sp) � Fun(Pop, Sp).

In light of this example, the equivalence (i) ⇔ (ii) in Theorem A can be informally
summarized by the following:

Slogan 1.11 Afinite poset enjoys Verdier duality if and only if it is homologically CW.

Of course, there is an example that is not a face poset:

Example 1.12 Let P be the face poset of the triangulation of a homology sphere that
is not a sphere. Then P� is Verdier, but it is not the face poset of any regular CW
complex.

Remark 1.13 In this paper, we work over S (or Z) for simplicity, but our argument is
valid over other coefficients. For example, for a field k and a finite poset P , the functor
lim←−: Fun(P,D(k)) → D(k) makes Fun(P,D(k)) a commutative Frobenius algebra
in the ∞-category of k-linear (presentable) stable ∞-categories if and only if P<p is
Gorenstein* over k for any p ∈ P .

As a byproduct of our proof, we find the following generalization of [12, Proposi-
tion 1.2.4.3], which may be of independent interest.

Theorem B Let P be a Gorenstein* finite poset. Then for any stable ∞-category C, a
diagram (P�) � (P)� → C is a limit if and only if it is a colimit.

We can handle the locally finite case by a limit argument; precisely, we show the
following:

Theorem C Let P a poset such that P≥p is finite and P<p is finite and Gorenstein* for
each p ∈ P (e.g., the face poset of a locally finite regular CW complex). Then there is
a canonical equivalence

D : Fun(P, Sp) −→ Fun(Pop, Sp),

which is pointwise given byD(F) : p �→ lim←−q∈P
Map(p, q)⊗ F(q), where⊗ denotes

the copower.

Remark 1.14 In Theorem C, the requirement that P≥p be finite cannot be dropped:
Let P be the poset given in [1, Example A.13]. Then P<p is Gorenstein* for any p;
in fact, P is the face poset of a regular CW structure of S∞. However, the assignment
described in the statement does not preserve compact objects, thus does not lift to an
equivalence.

Our formulation gives us more than aesthetic satisfaction. For instance, this uni-
fied view to the two duality theorems enables us to study the interaction between
stratification and Verdier duality. A sample application is the following:
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Theorem D Let f : X → Alex(P) be a stratification of a compact Hausdorff space,
where P is a Verdier finite poset. Suppose that the inverse image ShvSp(Alex(P)) →
ShvSp(X) is fully faithful. Then our duality functor Fun(P, Sp) → Fun(Pop, Sp) can
be canonically identified with the composite

ShvSp(Alex(P))
f ∗

−→ ShvSp(X)
D−→ cShvSp(X)

f+−→ cShvSp(Alex(P)),

where D is the Verdier duality equivalence for X and f+ is the cosheaf pushforward.

Example 1.15 In a nice situation, the (space-valued) inverse image Shv(Alex(P)) →
Shv(X) is fully faithful and its image consists of constructible sheaves; see [5, Sec-
tion 3]4 for a precise statement. For example, we can show that the assumption of
Theorem D is satisfied when X is a finite regular CW complex and P is its face poset.

This paper is organized as follows: We develop necessary tools on duality in Sect. 2
and on poset (co)homology in Sect. 3. Then we prove Theorem A by showing (ii) ⇒
(iii), (iii) ⇔ (i), and (i) ⇒ (ii) in Sects. 3.3, 4.2 and 4.3, respectively. We also show
Theorem B in Sect. 4.3. After that, we study its variants in Sect. 5 and in particular
prove Theorem C. In Sect. 6, we study Verdier duality for locally compact Hausdorff
spaces from a formal standpoint. It motivates our formulation and is used to obtain
Theorem D.

Conventions

For a poset P , wewrite P⊥ and P� for the posets obtained by adding the least element⊥
and the greatest element �, respectively. When we regard P as an ∞-category, these
correspond to its left and right cones (P and P�) in [11, Notation 1.2.8.4]. We also
write P⊥,� for the one obtained by adding both. The empty face (or (−1)-face) is not
included in our face poset, but we regard S−1 = ∅ as a sphere.

We use the closed symmetric monoidal structure on Pr given in [12, Section 4.8.1].
For an ∞-topos X and a presentable ∞-category C, the ∞-categories of C-valued
sheaves ShvC(X ) and cosheaves cShvC(X ) are identified with C ⊗ X and [X , C],
respectively. Concretely, their objects can be regarded as limit-preserving functors
X op → C and colimit-preserving functors X → C, respectively. We write f+ � f +
for the pushforward-pullback adjunction for cosheaves. The global section functor,
i.e., the cohomology functor, is denoted by �, not by R�.

2 General facts on duality

2.1 A useful criterion

Recall that for objects A, A∨ and amorphism e : A∨⊗A → 1 in a symmetricmonoidal
∞-category, we say that e is a counit of a duality between A and A∨ if for any objects
C and D the composite

4 Beware that this part contains a minor error; see Remark 5.20.
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Map(C, D ⊗ A∨)
−⊗A−−−→ Map(C ⊗ A, D ⊗ A∨ ⊗ A)

Map(C⊗A,D⊗e)−−−−−−−−−−→ Map(C ⊗ A, D)

is an equivalence.

Lemma 2.1 Let A and A∨ be objects and e : A∨ ⊗ A → 1 a morphism in a closed
symmetric monoidal ∞-category. If A is dualizable and the composite

A∨ � [1, A∨] −⊗A−−−→ [A, A∨ ⊗ A] [A,e]−−−→ [A, 1] (2.2)

is an equivalence, then e is a counit. Here [−,−] denotes the mapping object functor.
Proof By the definition of [−,−], it suffices to show that the morphism

C ⊗ A∨ � [1,C ⊗ A∨] −⊗A−−−→ [A,C ⊗ A∨ ⊗ A] [A,C⊗e]−−−−−→ [A,C]

is an equivalence for every C . Since A is dualizable, this morphism is equivalent to
the one obtained by applying C ⊗ − to (2.2). ��

2.2 Functorialities

For a commutative algebra A and a morphism l : A → 1 (of objects) in a closed
symmetric monoidal ∞-category, we can form a morphism A → [A, 1] as in (2.2)
by letting e be the composite l ◦ m where m : A ⊗ A → A is the multiplication. We
discuss the (1-categorical) naturality of this assignment (A, l) �→ (A → [A, 1]). Note
that the pair (A, l) is called a commutative Frobenius algebra if e is a counit.

Proposition 2.3 Suppose that f : A → B is a morphism of commutative algebras in
a symmetric monoidal ∞-category and that g : B → A is an A-linear morphism.
Then for every morphism l : A → 1 and any objects C and D, there are commutative
squares

Map(C, D ⊗ A) Map(C ⊗ A, D)

Map(C, D ⊗ B) Map(C ⊗ B, D),

(D⊗ f )◦− −◦(C⊗g)

Map(C, D ⊗ B) Map(C ⊗ B, D)

Map(C, D ⊗ A) Map(C ⊗ A, D),

(D⊗g)◦− −◦(C⊗ f )

where the horizontal morphisms are the ones associated to (A, l) and (B, l ◦ g),
respectively.

Moreover, if the symmetric monoidal structure is closed, the same thing holds when
the mapping spaces are replaced by the internal mapping objects.

Example 2.4 Let K be an ∞-category and i : K0 ↪→ K be an inclusion of a sieve.
A direct computation shows that f = i∗ : Fun(K , Sp) → Fun(K0, Sp) and its right
adjoint g satisfy the assumptions of Proposition 2.3 in Prst.
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Example 2.5 Let K be an∞-category and j : K1 ↪→ K be an inclusion of a cosieve. A
direct computation shows that f = j∗ : Fun(K , S) → Fun(K1, S) and its left adjoint
g satisfy the assumptions of Proposition 2.3 in Pr. This is a special case of Example
2.7 below.

Example 2.6 Let p : Y → X be a proper geometric morphism between ∞-toposes.
According to Lemma 6.7, f = p∗ : ShvSp(X ) → ShvSp(Y) and its right adjoint g
satisfy the assumptions of Proposition 2.3 in Prst.

Example 2.7 Let j : Y → X be an étale geometric morphism between ∞-toposes. As
noted in [11, Remark 6.3.5.2], f = j∗ : Shv(X ) → Shv(Y) and its left adjoint g
satisfy the assumptions of Proposition 2.3 in Pr.

Proof of Proposition 2.3 In this proof, in order to simplify the notation, wewrite (−,−)

for Map(C ⊗ −, D ⊗ −) or [C ⊗ −, D ⊗ −] if the symmetric monoidal structure is
closed.

For the first square, we construct the 2-cells in the diagram

(A, A ⊗ A) (A, A) (A, 1)

(1, A) (B, A ⊗ B) (B, A ⊗ A) (B, A) (B, 1).

(1, B) (B, B ⊗ B) (B, B)

(g,A⊗A) (g,A) (g,1)

(1, f ) (B, f⊗B)

We obtain the triangle and the three rectangles by naturality. We also obtain the
pentagon by the linearity of g and the functoriality of (B,−).

For the second square, we construct the 2-cells in the diagram

(B, B ⊗ B) (B, B) (B, A) (B, 1)

(1, B) (A, B ⊗ A) (A, B ⊗ B) (A, B) (A, A) (A, 1).

(1, A) (A, A ⊗ A)

( f ,B⊗B) ( f ,B) ( f ,A) ( f ,1)

(1,g) (A,g⊗A)

We obtain the upper triangle and the four rectangles by naturality. We also obtain the
lower triangle by the linearity of g and the functoriality of (A,−). ��

We record the following obvious consequence:

Corollary 2.8 In the situation of Proposition 2.3, assume furthermore that (A, l) is
Frobenius and that f ◦g is homotopic to the identity. Then (B, l ◦g) is also Frobenius.

We also have the following variant:
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Lemma 2.9 Suppose that f : A → B is a morphism of commutative algebras in
a symmetric monoidal ∞-category. Then for every morphism m : B → 1 and any
objects C and D, there is a commutative square

Map(C, D ⊗ A) Map(C ⊗ A, D)

Map(C, D ⊗ B) Map(C ⊗ B, D),

(D⊗ f )◦− −◦(C⊗ f )

where the horizontal morphisms are the ones associated to (A,m ◦ f ) and (B,m),
respectively.

Moreover, if the symmetric monoidal structure is closed, the same thing holds when
the mapping spaces are replaced by the internal mapping objects.

Proof We use the same notation as in the proof of Proposition 2.3. We construct the
2-cells in the diagram

(1, A) (A, A ⊗ A) (A, A)

(1, B) (A, B ⊗ B) (A, B) (A, 1)

(B, B ⊗ B) (B, B) (B, 1).

(1, f ) (A, f⊗ f ) (A, f )

( f ,B⊗B) ( f ,B) ( f ,1)

We obtain the upper square since f is a morphism of commutative algebras. We also
obtain the other cells by naturality. ��

3 Homotopy theory of posets

3.1 Poset cohomology

Definition 3.1 For a poset P , we write |P| for the geometric realization (as a topo-
logical space) of its nerve and �(P) for its order complex, i.e., the abstract simplicial
complex consisting of finite (nonempty) chains in P . Note that |P| is canonically
homeomorphic to the geometric realization of �(P).

In this subsection, we study how the cohomology of |P| and that of P , i.e., the
sheaf cohomology of Fun(P, S), are related. We first recall the following from [12,
Section A.1]:

Definition 3.2 We say that an ∞-topos X has constant shape if the shape ShX is
corepresentable. If X/X has constant shape for every X ∈ X , we say that X is locally
of constant shape. According to [12, Proposition A.1.8], this is equivalent to the
condition that the constant sheaf functor S → X admits a left adjoint.

Example 3.3 The presheaf ∞-topos of an ∞-category is locally of constant shape. Its
shape is the image under the left adjoint of S ↪→ Cat∞.
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Example 3.4 The sheaf ∞-topos of a CW complex is locally of constant shape. Its
shape is the homotopy type. In fact, any CW complex is locally of singular shape in
the sense of [12, Section A.4] as any open subspace is homotopy equivalent to a CW
complex.

Proposition 3.5 If an ∞-topos X is locally of constant shape, for any spectrum E,
the canonical morphism [�∞+ ShX , E] → �(X ; E) is an equivalence. Here [−,−]
denotes the mapping spectrum.

Proof Let p : X → S denote the projection. By assumption, p∗ admits a left adjoint p!.
When we regard objects in ShvSp(−) as limit-preserving functors (−)op → Sp,
the spectrum-valued pushforward p∗ : ShvSp(X ) → ShvSp(S) � Sp and pullback
p∗ : Sp � ShvSp(S) → ShvSp(X ) are given as the precompositions with (p∗)op
and (p!)op, respectively. Therefore, �(X ; E) � p∗ p∗E is the value of E : Sop → Sp
at p! p∗∗ � ShX , which is the cohomology [�∞+ ShX , E]. ��
Corollary 3.6 For a poset P and a spectrum E, we have a functorial (both in P and
in E) equivalence �(P; E) � �(|P|; E), where E denotes the constant sheaves on
the ∞-toposes Fun(P, S) and Shv(|P|), respectively.
Proof This follows from Examples 3.3 and 3.4 and Proposition 3.5. ��
Remark 3.7 In fact, at least if P≥p is finite for p ∈ P , we can construct a canonical
geometric morphism Shv(|P|) → Fun(P, S) whose inverse image functor is fully
faithful. This shows that we can take any functor E : P → Sp as a coefficient in the
statement of Corollary 3.6, but we do not need this generality in this paper.

3.2 Gorenstein* posets

We first recall the following notion from combinatorial commutative algebra. See [14,
Chapter II] for a textbook account, which in particular explains where the name comes
from.

Definition 3.8 We call an n-dimensional5 finite abstract simplicial complex Goren-
stein* if its geometric realization is a generalized homology n-sphere, i.e., an (integral)
homology n-manifold having the (integral) homology of an n-sphere.

The following definition is a variant of the definition of a Cohen–Macaulay poset
given in [3, Section 3].

Definition 3.9 We call a finite poset P Gorenstein* if for every p < q in P⊥,� the
interval (p, q) has the (integral) homology of a sphere6.

By definition if P is a Gorenstein* finite poset then (p, q) is Gorenstein* for every
p < q ∈ P⊥,�.
Lemma 3.10 Any maximal chain of a Gorenstein* finite poset P has the same length.
In other words, P⊥,� admits a rank function7.

5 Here n can be −1, so that the empty complex is Gorenstein*.
6 We regard S−1 = ∅ as a sphere.
7 A rank function on a finite poset P is a function r : P → Z such that r(q) = r(p)+1 if q is an immediate
successor of p.
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Proof This holds more generally for Cohen–Macaulay finite posets; see [3, Proposi-
tion 3.1]. ��

These two definitions are compatible:

Proposition 3.11 For a finite poset P, it is Gorenstein* if and only if �(P) is Goren-
stein*.

We omit the proof since it is a straightforward variant of [3, Proposition 3.3].

Corollary 3.12 For a finite abstract simplicial complex, it is Gorenstein* if its under-
lying poset is Gorenstein*.

We later need the following lemma, as we prefer cohomology:

Lemma 3.13 For a finite poset, theGorenstein* condition can be checked via cohomol-
ogy instead of homology; i.e., P isGorenstein* if and only if (p, q) has the cohomology
of a sphere for p < q in P⊥,�.

Proof By definition P is Gorenstein* if and only if so is Pop. Hence the desired result
follows from the self-duality of the ∞-category of perfect complexes over Z. ��

3.3 A vanishing result

Definition 3.14 Let P be a poset and E a spectrum. For p ≤ q in P , we let E[p,q] ∈
Fun(P, Sp) denote the functor obtained from the constant functor E ∈ Fun([p, q], Sp)

by left Kan extending along [p, q] ↪→ P≤q and then right Kan extending along
P≤q ↪→ P . If E ∈ D(Z), we use the same symbol for the element in Fun(P,D(Z))

determined similarly.

Proposition 3.15 For a Gorenstein* finite poset P, for every p < q in P� the coho-
mology �(P�;Z[p,q]) vanishes.

We later prove the converse.

Proof Since �(P�;Z[p,q]) � �((P�)≤q;Z[p,q]) holds and (P�)<q is also Goren-
stein*, we can assume q = �. By Lemma 3.10, there is a unique rank function
r : P⊥,� → Z satisfying r(⊥) = −1. Then |P| is a generalized homology (r(�)−1)-
sphere. If r(�) = 1 holds, P is the discrete poset with two elements and the result
can be directly checked. So we henceforth assume r(�) > 1.

In what follows, we repeatedly use Corollary 3.6. Let Z≥p denote the left Kan
extension of the constant functor with value Z along P≥p ↪→ P . Then the diagram

�(P�;Z[p,�]) �(P�;Z)

�(P;Z≥p) �(P;Z)

f
g
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in D(Z) obtained by restrictingZ[p,�] → Z from P� to P is cartesian since it induces
an equivalence between the vertical fibers. As P → P� induces an isomorphism
on H0(|−|;Z), we see that f induces an isomorphism on π0. On the other hand,
�(P;Z≥p) is computed as the relative cohomology fib(�(P;Z) → �(P\P≥p;Z)).
By the Lefschetz duality theorem, it is the dual of�r(�)−1�(P≥p;Z) inD(Z), which is
�1−r(�)Z, and g induces an isomorphismonπ1−r(�) as |P≥p| is connected. Therefore,
f and g can be identified with the two direct summand inclusions of �(P;Z) �
Z ⊕ �1−r(�)Z, from which �(P�;Z[p,�]) � 0 follows. ��
Proof of (ii) ⇒ (iii) of TheoremA This follows from Proposition 3.15. ��

We note that this vanishing also holds when Z is replaced by S:

Lemma 3.16 For a finite poset P and p ≤ q in P, the cohomology �(P;Z[p,q])
vanishes if and only if so does �(P;S[p,q]).

Proof Note that if a spectrum E is nonzero and bounded below, E⊗Z is also nonzero;
this can be seen by considering the smallest i such that πi E is nonzero. Hence
the desired result follows from �(P;Z[p,q]) � �(P;S[p,q]) ⊗ Z and the fact that
�(P;S[p,q]) is bounded below, both of which follow from the finiteness of P . ��

4 Verdier duality for finite posets

4.1 Recollements

We refer the reader to [12, Section A.8] for a discussion on recollements using ∞-
categories. When we say C0 and C1 form a recollement, C0 is supposed to be the
“closed” part; i.e., the C1-localization annihilates C0. We abuse terminology to say the
two functors C0 ↪→ C and C1 ↪→ C determine a recollement when C is a recollement
of their images.

We recall the following standard fact:

Lemma 4.1 Consider a presentable stable ∞-category C and suppose that j : P1 ↪→
P be an upward-closed full subposet with complement i : P0 ↪→ P. Let i∗ and j∗
denote the right Kan extension along i and j and j! the left Kan extension along j .
Then the following hold for the functor ∞-category Fun(P, C):

1. The functors i∗ and j∗ form a recollement.
2. The functors j! and i∗ also form a recollement.

Proof Both can be easily checked by using [12, Proposition A.8.20] and observing
that i∗ and j! are given as the extension-by-zero functors. ��
Lemma 4.2 Consider a left exact functor f : C → C′ and suppose that C and C′
are recollements of C0 and C1 and C′

0 and C′
1, respectively. Furthermore, assume the

following:

• The functor f restricts to define equivalences C0 → C′
0 and C1 → C′

1.
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• Themorphism L ′
0◦ f → f ◦L0 obtained by the above condition is an equivalence.

Then f itself is an equivalence.

Proof This follows from [12, Proposition A.8.14]. ��

4.2 Duality and the vanishing condition

Weprove (i) and (iii) inTheoremAare equivalent.We startwith a pointwise description
of D:

Lemma 4.3 Let K be a finite ∞-category so that lim←−: Fun(K , Sp) → Sp is a mor-
phism in Prst. Then the potential duality functor

D : Fun(K , Sp) −→ [Fun(K , Sp), Sp] � Fun(K op, Sp)

induced by the composite Fun(K , Sp) ⊗ Fun(K , Sp)
−⊗−−−−→ Fun(K , Sp)

lim←−−−→ Sp
(cf. (2.2)) is objectwise given by

F �−→
(
k �−→ lim←−l∈K Map(k, l) ⊗ F(l)

)
, (4.4)

where ⊗ denotes the copower.

Proof By definition, D is the composite Fun(K , Sp) → Fun(K op × K × K , Sp) →
Fun(K op, Sp), where the first and second maps are objectwise given by F �→
((k, l,m) �→ Map(k, l) ⊗ F(m)) and G �→ (

k �→ lim←−l
G(k, l, l)

)
, respectively. ��

Proof of (iii) ⇒ (i) of TheoremA We show by induction on #P that DP is an equiva-
lence, which is equivalent to the Verdier property by Lemma 2.1. If P = ∅, the claim
is obvious. We assume #P > 0 and pick a maximal element m ∈ P . Since {m} is
upward closed, by applying Lemma 4.1 to j : {m} ↪→ P and i : P\{m} ↪→ P , we can
form two recollements, which fit into a diagram

Fun(P \ {m}, Sp) Fun(P, Sp) Sp

Fun((P \ {m})op, Sp) Fun(Pop, Sp) Sp,

i∗

DP\{m} DP

j∗

i+ j?

(4.5)

where the identification Fun({m}, Sp) � Sp � Fun({m}op, Sp) ismade and j? denotes
the right adjoint of j+. Concretely, i+ is given by left Kan extension and i∗, j∗, and j?
are given by right Kan extensions. Proposition 2.3 applied to Example 2.4 says that
the left square commutes and that the canonical morphism i? ◦ DP → DP\{m} ◦ i∗ is
an equivalence, where i? denotes the left adjoint of i+.

We then consider applying Lemma 4.2 to conclude the proof. Since DP\{m} is an
equivalence by our inductive hypothesis, it remains to check thatDP restricts to define
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the dashed arrow and that it is an equivalence. Equivalently, we need to show that the
composite

Sp
j∗−→ Fun(P, Sp)

DP−→ Fun(Pop, Sp)
restriction Fun−−−−−−−−→ ({p}op, Sp) � Sp

is zero for p �= m and an equivalence for p = m. Note that since this functor is
colimit-preserving, it is determined by its value at S, for which we write Ep. Lemma
4.3 says that Ep is computed as lim←−q∈P

Map(p, q) ⊗ ( j∗S)(q).

If p � m, the spectrum Ep is zero as ( j∗S)(q) = 0 holds for q � m. If p ≤ m,
the spectrum Ep is equivalent to the cohomology �(P;S[p,m]). Hence Ep is zero for
p < m by the assumption (iii) and Lemma 3.16. Therefore, it remains to compute
Em � �(P;S[m,m]). We pick a maximal chain p0 < · · · < pr = m in P . For i = 1,
…, r , by using �(P;S[pi−1,pi ]) = 0, we have

�(P;S[pi ,pi ]) � fib
(
�(P;S[pi−1,pi ]) → �(P;S[pi−1,pi−1])

) � �−1�(P;S[pi−1,pi−1]).

Thus we have �(P;S[m,m]) = �−rS. Hence the dashed arrow in (4.5) is identified
with the functor �−r , which is an equivalence. ��
Proof of (i) ⇒ (iii) of TheoremA We proceed by induction on #P . If P = ∅, the claim
is obvious. We assume P �= ∅ and pick a maximal element m. Then P\{m} is also
Verdier by Corollary 2.8 applied to Example 2.4. Hence by our inductive hypothesis,
it suffices to show that �(P;S[p,m]) vanishes for any p < m.

We now form the diagram (4.5), but the dashed arrow already exists in this case
since both DP\{m} and DP are equivalences. As we have observed in the above proof,
the existence of the dashed arrow in particular means that �(P;S[p,m]) vanishes for
p < m, which is what we wanted to show by Lemma 3.16. ��

4.3 The Gorenstein* condition from duality

We finally complete the proof of Theorem A. The main ingredient is the following
nontrivial observation:

Proposition 4.6 If a finite poset P is Verdier, P>p is also Verdier for any p ∈ P.

The proof requires the following trivial observations:

Lemma 4.7 Let P be a finite poset. For p ∈ P, let S≤p denote the right Kan extension
of the constant functor with value S along P≤p ↪→ P. Then Fun(P, Sp) is generated
by S≤p under colimits and shifts.

Proof We proceed by induction on #P . There is nothing to prove if P = ∅. Assume
otherwise and pick a maximal element m ∈ P . Let C ⊂ Fun(P, Sp) be the full
subcategory generated by S≤p under colimits and shifts. The inductive hypothesis
implies that F ∈ Fun(P, Sp) is in C if F(m) is zero. Hence for any F ∈ Fun(P, Sp)

the fiber of F → F(m) ⊗ S≤m is in C. Since F(m) ⊗ S≤m is also in C by definition
we have F ∈ C. ��
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Lemma 4.8 Let P be a (not necessarily finite) poset. Then E[⊥,p] : P⊥ → Sp is a limit
diagram for any p ∈ P and any E ∈ Sp.

Proof We can assume that p is the greatest element by replacing P with P≤p. Then
the result follows from Corollary 3.6 or, more directly, the observation that now P is
weakly contractible. ��
Proof of Proposition 4.6 By induction, it suffices to consider the case where p is min-
imal.

Let j denote the inclusion P>p ↪→ P and j! : Fun(P>p, Sp) → Fun(P, Sp) the
left Kan extension functor. Corollary 2.8 applied to Example 2.5 says that the pair
(Fun(P>p, Sp), �P ◦ j!) is a commutative Frobenius algebra. Hence it suffices to
construct an equivalence �P ◦ j! � �−1 ◦ �P>p in Fun(Fun(P>p, Sp), Sp).

We write j as the composite P>p
k

↪−→ P≥p
l

↪−→ P . Then we have a morphism
j! � l! ◦ k! → l! ◦ k∗, where (−)! and (−)∗ denote the left and right Kan extension
functors. By applying �P ◦ −, we obtain �P ◦ j! → �P ◦ l! ◦ k∗. Since its cofiber can
be computed as

�P ◦ l! ◦ cofib(k! → k∗) � �P ◦ l∗ ◦ cofib(k! → k∗) � �P≥p ◦ cofib(k! → k∗) � �P>p ,

where we use the minimality of p, we are reduced to showing that �P ◦ l! ◦ k∗ is zero.
Let C denote the full subcategory of Fun(P≥p, Sp) spanned by the limit diagrams.

We need to show that �P ◦ l! is zero on C. We now observe that C is generated under
colimits and shifts by S[p,q] for q ∈ P>p: First, they are indeed limit diagrams by
Lemma 4.8. Then it follows from Lemma 4.7 that Fun(P>p, Sp) is generated by their
restrictions. Therefore, we need to show that (�P ◦ l!)(S[p,q]) � �P (S[p,q]) is zero,
but this follows from (iii) of Theorem A; note that we have already proven (i) ⇒ (iii)
in Sect. 4.2. ��
Proof of (i) ⇒ (ii) of TheoremA Let P be a Verdier finite poset. According to Lemma
3.13, it suffices to show that (p, q) has the (integral) cohomology of a sphere for p < q
in P⊥. Since we know that P≤q is Verdier from (i) ⇔ (iii), we can assume that q is
the greatest element of P . We can also assume that p = ⊥ by Proposition 4.6. Hence
it remains to compute the cohomology of P<q , which is the fiber of �(P;Z) →
�(P;Z[q,q]). If P is a singleton, it is obviously zero. Otherwise, Lemma 4.8 says
�(P;Z) � Z and the last part of the proof of (iii) ⇒ (i) says that Z[q,q] is some
positive desuspension of Z. Therefore, P<q has the cohomology of a sphere. ��

We then obtain Theorem B as a bonus:

Proof of Theorem B By the standard (stable) Yoneda argument, we can assume C = Sp.
Since Pop is also Gorenstein*, it suffices to show that any limiting diagram P⊥,� →
Sp is colimiting. Then as in the proof of Proposition 4.6, it suffices to show that
S[⊥,p] ∈ Fun(P⊥,�, Sp) is colimiting for p ∈ P�. Since this is trivial for p = �
as P⊥ is weakly contractible, we assume otherwise. By the self-duality of the ∞-
category of finite spectra, we are reduced to showing that S[p,⊥] ∈ Fun((P⊥,�)op, Sp)

is limiting. As p �= �, this is equivalent to the vanishing of the cohomology of
S[p,⊥] ∈ Fun((P⊥)op, Sp), which follows from Theorem A. ��



Posets for which Verdier duality holds Page 15 of 22 78

5 Variants

In this section, we prove Theorem C and show that our duality can be regarded as a
topological sheaf-cosheaf duality.

5.1 For locally finite posets

The equivalence (1.1) exists for the face poset of a locally finite regular CW complex.
We extend our duality to cover that case.

Definition 5.1 We say that a poset P is locally finite if P≥p is finite for every p ∈ P .

This terminology is justified by considering the Alexandroff topology of P (see
Definition 5.15).

Definition 5.2 For a poset P , we write Pfin(P) for the poset of finite subsets. We write
Down(P) for the poset of sieves, i.e., downward-closed full subposets. We consider
the functor

Pfin(P)� −→ Down(P) (5.3)

given by S �→ ⋃
s∈S P≤s and ∞ �→ P .

We prove that for a nice poset P , the presheaf ∞-categories of it and its opposite
can be recovered from those of full subposets of the form

⋃
s∈S P≤s for finite S by

taking colimits in Pr.

Proposition 5.4 For any poset P and any presentable ∞-category C, the diagram
given by the composite

Pfin(P)� (5.3)−−−→ Down(P)
(PShvC(−),−!)−−−−−−−−→ Pr

is colimiting.

Proof First, note that the diagram Pfin(P)� → Down(P) → Poset is colimiting.
Since Pfin(P) is filtered, its composite with Poset ↪→ Cat∞ is also colimiting, from
which the result follows. ��
Proposition 5.5 Suppose that P is a locally finite poset and C is a compactly generated
pointed ∞-category. Then the diagram given by the composite

Pfin(P)� (5.3)−−−→ Down(P)
(Fun(−,C),−∗)−−−−−−−−→ Pr

is colimiting. Here the second arrow is well defined by Lemma 5.7 below.

The proof requires several lemmas:



78 Page 16 of 22 K. Aoki

Lemma 5.6 For a poset P, let Downfin(P) be the image of Pfin(P) under (5.3). Then
Pfin(P) → Downfin(P) is cofinal.

Proof This follows from Joyal’s version of Quillen’s theorem A and the fact that a
nonempty poset having binary joins is weakly contractible. ��
Lemma 5.7 Let i : K0 ↪→ K be a sieve inclusion of∞-categories and C a presentable
∞-category. Then the right Kan extension functor i∗ : Fun(K0, C) ↪→ Fun(K , C)

preserves weakly contractible colimits. In particular, i∗ preserves colimits if C is
pointed.

Proof Let F : J� → Fun(K0, C) be a colimit diagramwhere J is weakly contractible.
We need to show that i∗(F(−))(k) : J� → C is colimiting for any k ∈ K . If k ∈ K0,
the diagram is equivalent to (F(−))(k), which is colimiting since so is F . If k /∈ K0,
the diagram is equivalent to the constant diagram with value ∗, which is colimiting
since J is weakly contractible. ��
Lemma 5.8 Let P be a poset and C a compactly generated ∞-category. Then any
compact object of Fun(P, C) is a left Kan extension of its restriction to some finite full
subposet. If P is finite, the full subcategory of compact objects is the essential image
of the inclusion Fun(P, Cω) ↪→ Fun(P, C).

Proof These follow from [1, Corollary 2.11 and Proposition 2.8], respectively. ��
Lemma 5.9 Let P be a locally finite poset and C a compactly generated pointed
∞-category. Then for any P0 ∈ Down(P), the right Kan extension functor
i∗ : Fun(P0, C) ↪→ Fun(P, C) preserves compact objects.

Proof Let p ∈ P0 be an element and C a compact object of C. Since i∗ preserves
(finite) colimits by Lemma 5.7, it suffices to show that F = i∗( j(p) ⊗C) is compact,
where j denotes the Yoneda embedding Pop

0 ↪→ Fun(P0, S). Now we compute F(q)

for q ∈ P: If q ∈ P≥p ∩ P0, it is C . If q /∈ P0, it is final and thus initial since
C is pointed. Otherwise, it is initial. This computation shows that F |P\P≥p is initial,
which means that F is the left Kan extension of F |P≥p , as P≥p is upward closed. This
computation also shows that F |P≥p takes compact values, which means by Lemma
5.8 that F |P≥p is compact, as P≥p is finite. Hence the desired result follows. ��
Lemma 5.10 Let P be a locally finite poset and C a compactly generated pointed
∞-category. Then every compact object in Fun(P, C) is a right Kan extension of its
restriction to

⋃
s∈S P≤s for some S ∈ Pfin(P).

Proof Let F be a compact object. By Lemma 5.8, there is a finite full subposet Q such
that F can be identified with the left Kan extension of F |Q along Q ↪→ P . We take
S = ⋃

q∈Q P≥q , which is finite since P is locally finite, and consider the inclusion
i : PS = ⋃

s∈S P≤s ↪→ P . Since PS contains Q, the morphism i!i∗F → F is an
equivalence. Hence it suffices to show that the composite i!i∗F → F → i∗i∗F is
an equivalence. As its restriction to PS is an equivalence, we consider p /∈ PS . Then
(i!i∗F)(p) is initial since no q ∈ Q satisfies q ≤ p and (i∗i∗F)(p) is final since PS
is downward closed. Since C is pointed, the desired claim follows. ��
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Proof of Proposition 5.5 According to Lemma 5.9, the diagram actually lands in Prω,
the ∞-category of compactly generated ∞-categories and functors preserving col-
imits and compact objects. Since the inclusion Prω ↪→ Pr preserves colimits by
[11, Theorem 5.5.3.18 and Proposition 5.5.7.6], it suffices to show that its restric-
tion Pfin(P)� → Prω is colimiting. Furthermore, since Pfin(P) is filtered, it suffices
to show that its composite with (−)ω : Prω → Cat∞ is colimiting. Then the desired
claim follows from Lemmas 5.6 and 5.10. ��

One might think that the desired equivalence could be immediately obtained from
Propositions 5.4 and 5.5 by taking the colimit of the assignment given by

Pfin(P) � S �−→ (
DPS : Fun(PS, Sp) → Fun(Pop

S , Sp)
) ∈ Fun(�1, Pr),

where PS denotes
⋃

s∈S P≤s . However, what we have proven in Sect. 2.2 is not
sufficient in order to construct such a functor directly. We avoid this issue by first
constructing the desired functor D for P:

Definition 5.11 For a locally finite poset P , we define �cpt : Fun(P, Sp) → Sp as the
colimit of the functor Pfin(P) → Fun(�1, Pr) given by Q �→ (� : Fun(Q, Sp) →
Sp). Note that the source is identified with Fun(P, Sp) by Proposition 5.5 and the
target is identified with Sp by Lemma 5.6 and the fact that Downfin(P) is weakly
contractible. From this, we obtain D : Fun(P, Sp) → Fun(Pop, Sp) as in Sect. 2.2.

Now the following two results imply Theorem C:

Proposition 5.12 Let P be a locally finite poset and F : P → Sp a functor. If P≤p

is finite for each p ∈ P, the functor D(F) : Pop → Sp is pointwise given by p �→
lim←−q∈P

Map(p, q) ⊗ F(q).

Proof We fix p and vary F . Then F �→ lim←−q∈P
Map(p, q)⊗ F(q) preserves colimits

by the finiteness assumption on P . Hencewe can assume that F is compact. ByLemma
5.10, we can find S ∈ Pfin(P) such that F is a right Kan extension of its restriction
to

⋃
s∈S P≤s . By replacing S with S ∪ {p}, we can assume p ∈ S. Then the desired

result follows from Lemma 4.3 since
⋃

s∈S P≤s is finite by assumption. ��
Theorem 5.13 Let P be a locally finite poset. If P<p is finite and Gorenstein* for each
p ∈ P, the pair (Fun(P, Sp), �cpt) is a commutative Frobenius algebra in Prst. In
particular, D is an equivalence.

Proof By Lemma 2.1, we only need to show thatD is an equivalence. For S ∈ Pfin(P),
let PS denote

⋃
s∈S P≤s ∈ Down(P). We regard D as an object of Fun(�1, Prst) and

consider the (essential) poset of subobjects Sub(D). By Proposition 2.3 applied to
Example 2.4, each S ∈ Pfin(P) determines DPS ∈ Sub(D). Hence we obtain the
morphism of posets Pfin(P) → Sub(D). Then we consider the composite

Pfin(P)� −→ Sub(D) −→ Fun(�1, Prst),

where we set∞ �→ D in the first arrow. This is colimiting by Propositions 5.5 and 5.4.
By assumption and Theorem A, the functor DPS is an equivalence for S ∈ Pfin(P).
Therefore, D is also an equivalence. ��
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Remark 5.14 We can define the lower shriek functor for a morphism between posets
satisfying the condition of Theorem C as the functor corresponding to the cosheaf
pushforward under the duality equivalences. See Remark 6.12 for the locally compact
Hausdorff case.

5.2 In terms of sheaves

We explain that our duality for a poset can be interpreted as a sheaf-cosheaf duality
over its Alexandroff space, which we recall as follows:

Definition 5.15 The Alexandroff space Alex(P) of a poset P is the topological space
whose underlying set is that of P and whose open sets are the upward-closed subsets.

We recall the following fact, which was first proven in [1, Example A.11].

Theorem 5.16 (Aoki) The assignment F �→ (p �→ F(P≥p)) determines the inverse
image functor of a geometric morphism

Fun(P, S) = PShv(Pop) −→ Shv(Alex(P)). (5.17)

This identifies Shv(Alex(P)) as the bounded reflection of PShv(Pop) and PShv(Pop)

as the hypercompletion of Shv(Alex(P)).

Note that this geometric morphism is not an equivalence in general; see [1, Exam-
ple A.13]. However, it is an equivalence in the situation we are interested in:

Proposition 5.18 If P is a locally finite poset, (5.17) is an equivalence.

Proof According to [1, Example A.12], this is true for finite posets. By Theorem 5.16,
the morphism (5.17) is an equivalence if and only if Shv(Alex(P)) is hypercomplete.
Since Shv(Alex(P)) can be written as a colimit of Shv(Alex(P≥p1 ∩ · · · ∩ P≥pn ))

for p1, …, pn ∈ P and n ≥ 1 in the ∞-category of ∞-toposes, Shv(Alex(P)) is
hypercomplete when P is locally finite. ��
Remark 5.19 Note that by using [2, Corollary 2.6] instead of [1, Example A.12] in the
proof, we can obtain this result for a wider class of posets.

Remark 5.20 It is a consequence of [5, Theorem 3.4] that the morphism (5.17) is an
equivalence for a poset satisfying the ascending chain condition. However, they use
the “geometric morphism” Shv(X) → PShv(Pop) constructed in [5, page 27] for a
stratification X → Alex(P), which is not geometric in general; the trivial stratification
onAlex(P) for the poset P in [1, ExampleA.13] gives a counterexample.Nevertheless,
when P is locally finite, Proposition 5.18 shows that themorphism is indeed geometric.

Hence Theorem C, which we have seen in Sect. 5.1, says the following:

Theorem 5.21 Let P be a locally finite poset such that P<p is finite and Gorenstein*
for each p ∈ P. Then there is a canonical equivalence

D : ShvSp(Alex(P)) −→ cShvSp(Alex(P)).
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6 Verdier duality for proper separated∞-toposes

The sheaf-cosheaf duality for locally compact Hausdorff spaces, which is often called
covariant Verdier duality, was studied in [12, Section 5.5.5]. In this section, we first
prove its generalization usingmore abstract methods. Thenwe prove TheoremDusing
our formulation. In future work, we will study a relative variant.

6.1 Proper separated∞-toposes

Following [10, C2.4.16], we say that a geometric morphism is Beck–Chevalley if
any pullback satisfies the Beck–Chevalley condition; i.e., the (unstable) proper base
change theorem holds. Recall that in [11, Section 7.3.1] a geometric morphism is
called proper if its arbitrary base change is Beck–Chevalley.

Definition 6.1 An ∞-topos X is called separated if its diagonal X → X × X is
proper.

Remark 6.2 Consider a geometric morphism Y → X between n-toposes. If the geo-
metric morphism Shv(Y) → Shv(X ) between ∞-toposes is proper, its arbitrary base
change is Beck–Chevalley in the (n + 1)-category of n-toposes, but not vice versa.
This is why in 1-topos theory we usually call a geometric morphism tidy when its
arbitrary base change is Beck–Chevalley in the 2-category of 1-toposes. The same
remark applies to the notion of separatedness.

However, the following is proven in [11, Theorem 7.3.1.16]:

Example 6.3 [Lurie] The sheaf ∞-topos of a compact Hausdorff space is proper and
separated.

We recall the following notion, which was introduced in [7, Appendix D]:

Definition 6.4 [Gaitsgory] A presentably symmetric monoidal stable∞-category C is
called rigid if the unit u : Sp → C admits a colimit-preserving right adjoint and the
multiplication m : C ⊗ C → C admits a C ⊗ C-linear8 right adjoint.

If C is rigid, it is easy to see that uR ◦ m and mR ◦ u constitute a duality datum in
Pr, where −R indicates the right adjoint. In particular, (C, uR ◦ m) is a commutative
Frobenius algebra.

Theorem 6.5 If X is a proper separated ∞-topos, then ShvSp(X ) is rigid.

Corollary 6.6 The pair (ShvSp(X ), �) is a commutative Frobenius algebra in Prst for
any proper separated ∞-topos X .

Proof of Theorem 6.5 According to [12, Example 4.8.1.19], the binary product of ∞-
toposes can be computed as their tensor product in Pr. Hence the result follows from
Lemma 6.7 below. ��
8 Here the colimit-preserving property is included in the definition of linearity.
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Lemma 6.7 Let f : Y → X be a proper morphism of∞-toposes, then f ∗ : ShvSp(X )

→ ShvSp(Y) admits a ShvSp(X )-linear right adjoint.

Proof According to [11, Remark 7.3.1.5], the direct image functor Y → X preserves
filtered colimits. Hence f∗ : ShvSp(Y) → ShvSp(X ) preserves colimits. Now we
consider the diagram

Y Y × X Y

X X × X X

graph

f

pr1

f ×id f
diagonal pr1

in the ∞-category of ∞-toposes. Since the right and outer squares are cartesian,
so is the left one. According to [12, Example 4.8.1.19], the binary product of ∞-
toposes can be computed as their tensor product in Pr. Therefore, since f × id is
Beck–Chevalley, for any F ∈ ShvSp(X ) and G ∈ ShvSp(Y) the canonical morphism
f∗G ⊗ F → f∗(G ⊗ f ∗F) is an equivalence. ��

6.2 The locally compact case

The following result is derived from Corollary 6.6 by using Corollary 2.8 applied to
Example 2.7:

Theorem 6.8 Let j : U ↪→ X be an open subtopos of a proper separated ∞-topos.
Then the pair (ShvSp(U), �X ◦ j!) is a commutative Frobenius algebra in Prst.

Here the composite �X ◦ j! depends on j , not only on U , but there is a canonical
choice for locally compact spaces:

Definition 6.9 Let X be a locally compact Hausdorff space. We define the global
section with compact support �cpt as the composite p∗ ◦ j! where j : X ↪→ X∞ is the
inclusion to its one-point compactification and p : X∞ → ∗ is the projection. Then
Theorem 6.8 says that (ShvSp(X), �cpt) is a commutative Frobenius algebra. We let
D : Shv(X) → cShv(X) denote the associated equivalence (cf. Sect. 2.2).

Remark 6.10 One can prove Verdier duality for locally compact Hausdorff spaces by a
similarmethod to the onewe have used in Sect. 5.1 for locally finite posets: Namely, the
sheaf and cosheaf ∞-categories of a locally compact Hausdorff space can be written
as colimits in Pr as those of compact subspaces. We leave the details to the interested
reader.

We give its objectwise description to justify calling our functor “Verdier duality”:

Proposition 6.11 For a locally compact Hausdorff space X and a spectrum-
valued sheaf F ∈ ShvSp(X), the cosheaf D(F) is pointwise given by U �→
lim−→K⊂U

fib(F(X) → F(X\K )), where K runs over compact subsets.

Note that Lurie’s equivalence also has this pointwise formula; see [12, Proposi-
tion 5.5.5.10].



Posets for which Verdier duality holds Page 21 of 22 78

Proof First suppose that X is compact. Let j denote the inclusion U ↪→ X . By
definition, D(F)(U ) is the global section of ( j!SU ) ⊗ F . Let i denote the inclusion
X\U ↪→ X . Then by recollement, D(F)(U ) is equivalent to the global section of
fib(F → i∗i∗F). Hence it is written as lim−→V⊃X\U fib(F(X) → F(V )), where V runs

over open subsets. As X is compact, this coincides with the desired description.
We proceed to the general case. Let j : X ↪→ X∞ denote the inclusion to the

one-point compactification and i the inclusion of the point at infinity. Proposition 2.3
applied to Example 2.7 says j+ ◦DX � DX∞ ◦ j!. Hence DX (F)(U ) can be computed
as

( j+ ◦ DX )(F)(U ) � (DX∞ ◦ j!)(F)(U ) � lim−→
K⊂U

fib
(
( j!F)(X∞) → ( j!F)(X∞ \ K )

)
,

where we use the compact case. By recollement, the desired result follows from the
vanishing of fib((i∗i∗ j∗F)(X∞) → (i∗i∗ j∗F)(X∞\K )) for each K , which follows
from K ⊂ X . ��
Remark 6.12 Let f : Y → X be a continuous map between locally compact Hausdorff
spaces. As in [8, Remark 9.4.6], we can define the lower shriek functor f! as the
composite (DX )−1 ◦ f+ ◦ DY . One could check its standard properties by applying
Proposition 2.3 to Examples 2.6 and 2.7. To describe further functorial properties of
this construction, one could use the technology presented in [9, Chapter 7]. However,
beware that it is built on unproven results in (∞, 2)-category theory.

6.3 Application: Verdier duality and stratification

We prove the following generalization of Theorem D:

Theorem 6.13 Let P be a finite poset andX → Shv(Alex(P)) a geometric morphism.
Suppose that P is Verdier, that X is proper and separated, and that the spectrum-
valued inverse image f ∗ : ShvSp(Alex(P)) → ShvSp(X ) is fully faithful. Then we
have DP � f+ ◦ DX ◦ f ∗.

Remark 6.14 The assumption is satisfied when the space-valued inverse image
Shv(Alex(P)) → X is fully faithful: This can be seen by considering objects of
ShvSp(−) as left exact functors (Spω)op → −.

Proof of Theorem 6.13 We have �Alex(P) � �Alex(P) ◦ f∗ ◦ f ∗ � �X ◦ f ∗. Hence the
desired result follows from Lemma 2.9. ��
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